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Abstract
The paper On the multifractal nature of fully developed turbulence and chaotic
systems, by Benzi et al (1984 J. Phys. A: Math. Gen. 17 3521) has been a
starting point of many investigations on the different faces of self-similarity
and intermittency in turbulent phenomena. Since then, the multifractal model
has become a useful tool for the study of small-scale turbulence, in particular for
detailed predictions of different Eulerian and Lagrangian statistical properties.
On the occasion of the 50th birthday of our unforgettable friend and colleague
Giovanni Paladin (1958–1996), we review here the basic concepts and some
applications of the multifractal model for turbulence.

PACS numbers: 47.27.Gs, 47.27.eb, 47.53.+n, 05.45.Df, 47.51.+a, 05.10.Gg

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The idea of the multifractal approach to fully developed turbulence has been introduced by
Giorgio Parisi and Uriel Frisch during the Summer School Turbulence and Predictability of
Geophysical Fluid Dynamics held in Varenna in June 1983 [1]. One of us (AV) had the chance
to participate in that school and then to coauthor, with R Benzi, G Parisi and G Paladin, the
paper published in this journal where the word multifractal appeared for the first time [2].

From a technical point of view the idea of the multifractal is basically contained in the
large deviation theory [3, 4], which is an important chapter of the probability theory. However,
the introduction of the multifractal description in 1980s had an important role in statistical
physics, chaos and disordered systems. In particular, to clarify in a rather neat way that the
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usual idea, coming from critical phenomena, that just few scaling exponents are relevant, is
wrong, and an infinite set of exponents is necessary for a complete characterization of the
scaling features.

As pioneering works which anticipated some aspects of the multifractal approach to
turbulence, we can cite the log-normal theory of Kolmogorov [5], the contributions of Novikov
and Stewart [6] and Mandelbrot [7].

This paper has no pretense to be a survey of the many applications of the multifractal
description in chaos, disordered systems and natural phenomena; for general reviews on these
aspects, see [8–10]. For a more mathematically oriented treatment, see [11]. Our aim is a
discussion on the use of the multifractal methods in the study of the scaling features of fully
developed turbulence.

The paper is organized as follows. Section 2 is devoted to the introduction of the
multifractal model of turbulence and its connections with the f (α) versus α formalism
introduced by Halsey et al [12], and the large deviations theory [3, 4]. In section 3 we discuss
the implications of multifractality on Eulerian features, namely the statistical properties of
the velocity gradients and the existence of an intermediate dissipative range. Section 4 is
devoted to the implications of the multifractal nature of turbulence on Lagrangian statistics.
In section 5 we present the Lagrangian acceleration statistics. Section 6 treats the relative
dispersion, in particular we discuss the multifractal generalization of the classical Richardson
theory. Section 7 is devoted to the multifractal analysis of the dispersion in two-dimensional
convection.

2. From Kolmogorov to multifractals

Let us consider the Navier–Stokes equations for an incompressible fluid:

∂v
∂t

+ (v · ∇)v = − 1

ρ
∇p + ν�v + F, ∇ · v = 0. (1)

Because of the nonlinear structure of the equation, an analytical treatment is a formidable task.
For instance, in the 3D case, a theorem for the existence of global solution for arbitrary ν is
still missing.

For a perfect fluid (i.e. ν = 0) and in the absence of external forces (F = 0), the
evolution of the velocity field is given by the Euler equation, which conserves the kinetic
energy. In such a case, introducing an ultraviolet cutoff Kmax on the wave numbers, it
is possible to build up an equilibrium statistical mechanics simply following the standard
approach used for the Hamiltonian statistical mechanics. On the other hand, because of the
so-called dissipative anomaly [13, 14], in 3D the limit ν → 0 is singular and cannot be
interchanged with Kmax → ∞, therefore the statistical mechanics of an inviscid fluid has
a rather limited relevance for the Navier–Stokes equations at very high Reynolds numbers
(Re = V L/ν, where V and L are the typical speed and length of the system, respectively).

In addition, mainly as a consequence of the non-Gaussian statistics, even a systematic
statistical approach, e.g. in terms of closure approximations, is very difficult [13, 14].

In the fully developed turbulence (FDT) limit, i.e. ν → 0, and in the presence of forcing at
large scale, one has a non-equilibrium statistical steady state, with an inertial range of scales,
where neither energy pumping nor dissipation acts, which shows strong departures from the
equipartition [13, 14]. A simple and elegant explanation of the main statistical features of
FDT is due to Kolmogorov [15]: in a nutshell, it is assumed the existence of a range of scales
where the energy—injected at the scale L—flows down (with a cascade process, as remarked
by Richardson [16]) to the dissipative scale �D ∼ LRe−3/4, where it is dissipated by molecular
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viscosity. Since, practically, neither injection nor dissipation takes place in the inertial range,
the only relevant quantity is the average energy transfer rate ε̄. Dimensional counting imposes
the power-law dependence for the second-order structure function (SF)

S2(�) = 〈
δv2

�

〉 = 〈(v(x + �) − v(x))2〉 ∝ ε̄2/3�2/3, (2)

where, for the sake of simplicity, we ignore the vectorial nature of the velocity field. The
scaling law (2) is equivalent to a power spectrum E(k) ∝ ε̄2/3k−5/3 in good agreement with the
experimental observations. The original Kolmogorov theory (often indicated as K41) assumes
a self-similarity of the turbulent flow. As a consequence, the scaling behavior of higher order
structure functions,

Sp(�) = 〈|v(x + �) − v(x)|p〉 ∼ �ζp , (3)

is described by a single scaling exponent: ζp = p/3.

2.1. The multifractal model

The Navier–Stokes equations are formally invariant under the scaling transformation:

x → λx, v → λhv, t → λ1−ht, ν → λh+1ν,

with λ > 0 (indeed the Reynolds number V L/ν is invariant under the above transformations).
The exponent h cannot be determined with only symmetry considerations, nevertheless

there is a rather natural candidate: h = 1/3. Such a value of the exponent is suggested by the
dimensional argument of the K41 and also, and more rigorously, by the so-called ‘4/5 law’,
an exact relation derived by Kolmogorov from the Navier–Stokes equations [13, 17], which,
under the assumption of stationarity, homogeneity and isotropy, states〈

δv3
||(�)

〉 = − 4
5 ε̄�, (4)

where δv||(�) is the longitudinal velocity difference between two points at a distance �.
We can say that the K41 theory corresponds to a global invariance with h = 1/3 and

therefore ζp = p/3. This result is in disagreement with several experimental investigations
[13, 18] which have shown deviations of the scaling exponents from p/3. This phenomenon,
which goes under the name of intermittency [13], is a consequence of the breakdown of self-
similarity and implies that the scaling exponents cannot be determined on a simple dimensional
basis.

A simple way to modify the K41 consists in assuming that the energy dissipation
is uniformly distributed on homogeneous fractal with dimension DF < 3. This implies
δv�(x) ∼ �h with h = (DF − 2)/3 for x on the fractal and δv�(x) non-singular otherwise.
This assumption (called absolute curdling or β-model) gives

ζp = DF − 2

3
p + (3 − DF ). (5)

Such a prediction, with DF � 2.83, is in fair agreement with the experimental data for small
values of p, but higher order scaling exponents give a clear indication of a nonlinear behavior
in p.

The multifractal model of turbulence [1, 13, 19] assumes that the velocity has a local
scale-invariance, i.e. there is not a unique scaling exponent h such that δv� ∼ �h, but a
continuous spectrum of exponents, each of which belonging to a given fractal set. In other
words, in the inertial range one has

δv�(x) ∼ �h, (6)

3
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if x ∈ Sh, and Sh is a fractal set with dimension D(h) and h ∈ (hmin, hmax). The probability
to observe a given scaling exponent h at the scale � is P�(h) ∼ �3−D(h), and therefore one has

Sp(�) = 〈|δv�|p〉 ∼
∫ hmax

hmin

�hp�3−D(h) dh ∼ �ζp . (7)

For � 
 1, a steepest descent estimation gives

ζp = min
h

{hp + 3 − D(h)} = h∗p + 3 − D(h∗), (8)

where h∗ = h∗(p) is the solution of the equation D′(h∗(p)) = p. The Kolmogorov ‘4/5’ law
(4) imposes ζ3 = 1 which implies that

D(h) � 3h + 2, (9)

with the equality realized by h∗(3). The Kolmogorov similarity theory corresponds to the case
of only one singularity exponent h = 1/3 with D(h = 1/3) = 3.

Of course the computation of D(h), or equivalently ζp, from the NSE is not at present an
attainable goal. A first step is a phenomenological approach using multiplicative processes.
Let us briefly remind the so-called random β-model [2]. This model describes the energy
cascade in real space looking at eddies of size �n = 2−nL, with L the length at which the
energy is injected. At the nth step of the cascade a mother eddy of size �n splits into daughter
eddies of size �n+1, and the daughter eddies cover a fraction βj (0 < βj < 1) of the mother
volume. As a consequence of the fact that the energy transfer is constant throughout the
cascade one has for the velocity differences vn = δv�n

on the scale �n is non-negligible only
on a fraction of volume

∏
j βj , and is given by

vn = v0�
1/3
n

n∏
j=1

β
−1/3
j , (10)

where βj s are independent, identically distributed random variables. Phenomenological
arguments suggest that βj = 1 with probability x and βj = B = 2−(1−3hmin) with probability
1 − x. The above multiplicative process generates a two-scale Cantor set, which is a rather
common structure in chaotic systems. The scaling exponents are

ζp = p

3
− ln2[x + (1 − x)B1−p/3] (11)

corresponding to

D(h) = 3 +

(
3h − 1

)[
1 + ln2

(
1 − 3h

1 − x

)]
+ 3h ln2

( x

3h

)
. (12)

The two limit cases are x = 1, i.e. the K41, and x = 0 which is the β-model with
DF = 2 + 3hmin. Using x = 7/8, hmin = 0 (i.e. B = 1/2), one has a good fit for the
ζp of the experimental data at high Reynolds numbers.

Of course it is not so astonishing to find a model to fit the experimental data. Indeed,
there are now many phenomenological models for D(h) which provide scaling exponents in
agreement with experimental data. A popular one is the so-called She–Lévêque model [20]
which is reproduced by the multifractal model with

D(h) = 1 +
2β − 3h − 1

ln β

[
1 − ln

(
2β − 1 − 3h

2 ln β

)]
and gives for the scaling exponents

ζp = 2β − 1

3
p + 2(1 − βp/3) (13)
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Figure 1. Structure function scaling exponents ζp plotted versus p. Circles and triangles correspond
to the data of Anselmet et al [18]. The solid line corresponds to Kolmogorov scaling p/3; the
dashed line is the random β-model prediction (11) with B = 1/2 and x = 7/8; the dotted line is
the She–Lévêque prediction (13) with β = 2/3.

which are close to the experimental data for β = 2/3. Another important model, which
was introduced by Kolmogorov himself without reference to the multifractal model, is the
log-normal model which will be discussed in section 2.2.

The relevance, and the success, of the multifractal approach is in the possibility to predict,
and test, nontrivial statistical features, e.g. the probability density function (PDF) of the
velocity gradient, the existence of an intermediate dissipative range and precise scaling for
Lagrangian quantities. Once D(h) is obtained by a fit of the experimental data, e.g. from
the ζp, then all the predictions obtained in the multifractal model framework must be verified
without additional free parameters.

2.2. Relation between the original multifractal model and the f (α) versus α

The multifractal model for the FDT previously discussed is linked to the so-called f (α) versus
α description of the singular measures (e.g. in chaotic attractors) [12, 14, 21]. In order to
show this connection let us recall the Kolmogorov revised theory [5] (called K62) stating
that the velocity increments δv� scales as (ε��)

1/3, where ε� is the energy dissipation space-
averaged over a cube of edge �. Let us introduce the measure µ(x) = ε(x)/ε̄, a partition of
non-overlapping cells of size � and the coarse graining probability

Pi(�) =
∫

�(x)

dµ(y)

where l(xi ) is a cube of edge � centered in xi , of course ε� ∼ �−3P(�). Denoting with α the
scaling exponent of P� and with f (α) the fractal dimension of the subfractal with a scaling
exponent α, we can introduce the Renyi dimensions dp:∑

i

Pi(�)
p ∼ �(p−1)dp ,

where the sum is over the non-empty boxes. A simple computation gives

(p − 1)dp = min
α

[pα − f (α)].

Noting that
〈
ε

p

�

〉 = �3 ∑
ε

p

� , we have〈
ε

p

�

〉 ∼ �(p−1)(dp−3),

5
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therefore one has the correspondence

h ↔ α − 2

3
, D(h) ↔ f (α), ζp = p

3
+

(
p

3
− 1

)(
dp

3
− 3

)
.

Of course the result ζ3 = 1, once assumed δv ∼ (ε��)
1/3, holds for any f (α). Let us note that

the log-normal theory K62 where

ζp = p

3
+

µ

18
p(3 − p)

is a special case of the multifractal model, where there are no restrictions on the values of h
and D(h) is a parabola with a maximum at DF = 3:

D(h) = − 9

2µ
h2 +

3

2
(2 + µ)h − 4 − 20µ + µ2

8µ

and the parameter µ is determined by the fluctuation of ln ε�.

2.3. A technical remark on multifractality

To obtain the scaling behavior of Sp(�) ∼ (�/L)ζp given by (7) with ζp obtained from (8), one
has to assume that the exponent ph + 3 − D(h) has a minimum, ζp, which is a function of h,
and that such an exponent behaves quadratically with h in the vicinity of the minimum. This
is the basic assumption to apply the Laplace method of steepest descent [22]. The point we
would like to recall here is that, for small separations, �, it is true that Sp(�) ∼ (�/L)ζp but
with a logarithmic prefactor:

Sp(�) ∼
[
−ln

(
�

L

)]−1/2(
�

L

)ζp

. (14)

Such a prefactor is usually not considered in the naive application of the Laplace method leading
to (7). The presence of such logarithmic correction, if present, would clearly invalidate the
4/5th law (4), one of the very few exact results in fully developed turbulence.

The question on whether such logarithmic correction is likely has quantitatively been
addressed by Frisch et al [23]. There, exploiting the refined large-deviations theory, the
authors were able to explain in which way the logarithmic contribution cancels out thus giving
rise to a prediction fully compatible with the naive (a priori unjustified) procedure to extract
the scaling behavior (7). The key point is that the leading-order large deviation result for the
probability P�(h) to be within a distance � of the set carrying singularities of scaling exponent
between h and h + dh,

P�(h) ∼
(

�

L

)3−D(h)

, (15)

must be generalized to take into account the next subleading order. In doing so, as a result one
obtains [23]

P�(h) ∼
(

�

L

)3−D(h) [
− ln

�

L

]1/2

, (16)

which contains subleading logarithmic correction. It is worth observing that despite the
multiplicative character of the logarithmic correction one speaks of ‘subleading correction’.
This is justified by the fact that the correct statement of the large-deviations leading-order
result involves the logarithm of the probability divided by the logarithm of the scale. The
correction is then a subleading additive term.

6
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Once expression (16) is plugged in the integral

Sp(�) ∼
∫

dhP�(h)

(
�

L

)ph

(17)

and the saddle point estimation is carried out according to [22], logarithms disappear and the
expected 4/5th law emerges.

It is worth mentioning that the presence of a square root of a logarithm correction
in the multifractal probability density had already been proposed by [24] on the basis
of a normalization requirement. In that paper, the authors observed that without such a
correction the singularity spectrum f (α) comes out wrong; they also pointed out that a similar
correction has been proposed by [25] in connection with the measurement of generalized
Renyi dimensions.

3. Implications of multifractality on Eulerian features

At first we note that a consequence of the presence of the intermittency the Kolmogorov scale
does not take a unique value. The local dissipative scale �D is determined by imposing the
effective Reynolds number to be of order unity:

Re(�D) = δvD�D

ν
∼ 1, (18)

therefore the dependence of �D on h is thus

�D(h) ∼ LRe− 1
1+h , (19)

where Re = Re(L) is the large-scale Reynolds number [26].
In this section we will show that the fluctuations of the dissipative scale, due to the

intermittency in the turbulent cascade, is relevant of the statistical features of the velocity
differences and velocity gradient, and in addition it implies the existence of an intermediate
region between the inertial and dissipative range [27].

3.1. The PDF of the velocity differences and velocity gradient

Let us denote by s the longitudinal velocity gradient. Such a quantity can immediately be
expressed in terms of the singularity exponents h as

|s| ∼ δv�D

�D

= v0�
h−1
D = v

2
1+h

0 ν
h−1
h+1 , (20)

where we used the fact that δv� ∼ v0l
h from (6) and we have exploited (19). From (20) we

realize that we can easily express the PDF of s (for a fixed h), Ph(s), in terms of the PDF,
�(V0), of the large-scale velocity differences V0, with v0 ≡ |V0|. The latter PDF is indeed
known to be accurately described by the Gaussian distribution [28]. The link between the two
PDFs is given by the standard relation

Ph(s) = �(V0)

∣∣∣∣dV0

ds

∣∣∣∣ (21)

from which one immediately gets

Ph(s) ∼
(

ν

|s|
) 1−h

2

e
− ν1−h |s|1+h

2〈V 2
0 〉 . (22)

The K41 theory and the β-model correspond to h = 1/3 and h = (DF − 2)/3, respectively.
In both cases, a stretched exponential form for the PDF is predicted with an exponent, 1 + h,

7
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larger than 1. Experimental data (see, e.g. [29, 30]) are not consistent with such a prediction
being actually compatible with a stretched exponent whose value is smaller than 1.

The multifractal description has thus to be exploited to capture those experimental
evidences. To do that we recall expression (10) for the random β-model

vn = v0�
1/3
n

n∏
j=1

β
−1/3
j (23)

from which the probability distribution of the velocity increments vn reads

P(vn) =
∫

�(V0) dV0

∫
δ

(
vn − v0l

1/3
n

n∏
i=1

β
−1/3
i

)
n∏

j=1

βiµ(βi) dβi. (24)

Here, µ(βi) is the probability density of βi s assumed to be of the form

µ(βi) = xδ(βi − 1) + (1 − x)δ(βi − B) (25)

with B = 2−(1−3hmin).
Since βis are identically distributed, the above integral becomes

P(vn) =
n∑

K=0

(
n

K

)
xn−K(1 − x)KB4K/3l−1/3

n e−CB2K/3l
−2/3
n v2

n (26)

with C ≡ (2〈V 2
0 〉)−1. It is easy to see [31] the passage of the above PDF from a Gaussian

form at large scales (small n) to an exponential-like form at small scales (large n).
To obtain the gradient PDF from (26) it is sufficient to stop the sum at n = N such that

vN lN/ν = 1. This is equivalent to say

l2
N = 2−2N ∼ ν

s
or N = ln s

ν

2 ln 2
. (27)

By noting that B2N = (ν/s)1−3hmin the resulting gradient PDF reads

P(s) ∼
N∑

K=0

(
N

K

)
xN−K(1 − x)K

(
ν

|s|
)(1+2q)/3

e−Cν(2+q)/3|s|(4−q)/3
, (28)

where q ≡ K(1 − 3hmin)/N . The K41 prediction corresponds to considering only the term
K = 0 with x = 1.

We already discussed that x = 7/8 and hmin = 0 provide a good fit for the scaling
exponents ζp of the structure functions in the limit of high Reynolds numbers. The same
parameters give a PDF behavior in good agreement with the available experimental data (see
[31] and figure 2).

3.2. Intermediate dissipative range

Now let us show that as a consequence of the fluctuations of the dissipative scale one has
the existence of an intermediate region (the intermediate dissipative range, IDR) between the
inertial and dissipative range [27]. The presence of fluctuations of �D , see (19), modifies the
evaluation of the structure functions (7): for a given �, the saddle point evaluation remains
unchanged if, for the selected exponent h∗(p), one has �D(h∗(p)) < �. If, in contrast, the
selected exponent is such that �D(h∗(p)) > � the saddle point evaluation is not consistent,
because at scale � the power-law scaling (6) is no longer valid. In this intermediate dissipation
range, the integral in (7) is dominated by the smallest acceptable scaling exponent h(�) given
by inverting (19), and the structure function of order p a pseudo-algebraic behavior, i.e. a

8
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Figure 2. Log-linear plot of the PDF of velocity gradients s rescaled with the rms value. Points
represent experimental data from [30], solid line is the multifractal prediction with the random
β-model, dotted and dashed lines represent the K41 and β-model results, respectively.

power law with exponent ph(�) + 3 − D(h(�)) which depends on the scale �. Taking into
account the fluctuations of the dissipative range [27], one has for the structure functions

Sp(�) ∼
{
�ζp if �D(h∗(p)) < �

�h(�)p+3−D(h(�)) if �D(hmin) < � < �D(h∗(p)).
(29)

A simple calculation [27, 13] shows that it is possible to find a universal description valid
both in the inertial and in the intermediate dissipative ranges. Let us discuss this point for the
energy spectrum E(k). Introducing the rescaled variables

F(θ) = ln E(k)

ln Re
and θ = ln k

ln Re
, (30)

one obtains the following behavior:

F(θ) =

⎧⎪⎪⎨
⎪⎪⎩

−(1 + ζ2)θ for θ <
1

1 + h∗(2)

−2 − 2θ + θD(θ−1 − 1) for
1

1 + h∗(2)
< θ <

1

1 + hmin
.

(31)

The prediction of the multifractal model is that ln E(k)/ ln Re is a universal function of
ln k/ ln Re. This is in contrast with the usual scaling hypothesis according to which ln E(k)

should be a universal function of ln(k/kD)). The multifractal universality has been tested by
collapsing energy spectra obtained from turbulent flow in a wide range of Re [32], see also
[33].

3.3. Exit times for turbulent signals and the IDR

In the following we will discuss a method alternative to the study of the structure functions
which allows for a deeper understanding of the IDR.

Basically, in typical experiments one is forced to analyze the one-dimensional string of
data v(t), e.g. the output of hot-wire anemometer, and the Taylor frozen-turbulence hypothesis
is used to bridge measurements in space with measurements in time. As a function of time
increment, τ , structure functions assume the form: Sp(τ) = 〈[(v(t + τ) − v(t)]p〉. In the

9
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inertial range, τD 
 τ 
 T0 (where T0 = L0/V0, and the dissipative time, τD = �D/V0), the
structure functions develop an anomalous scaling behavior: Sp(τ) ∼ τ ζp , where τ ∼ �/V0.

The main idea, which can be applied both to experimental and synthetic data, is to take
a time sequence v(t), and to analyze the statistical properties of the exit times from a set of
defined velocity thresholds. More precisely, given a reference initial time t0 with velocity
v(t0), we define τ(δv) as the first time necessary to have an absolute variation equal to δv in
the velocity data, i.e. |v(t0) − v(t0 + τ(δv))| = δv. By scanning the whole time series we
recover the probability density functions of τ(δv) at varying δv from the typical large-scale
values down to the smallest dissipative values. Positive moments of τ(δv) are dominated by
events with a smooth velocity field, i.e. laminar bursts in the turbulent cascade. Let us define
the inverse structure functions (Inverse-SF) as [33, 34]

�p(δv) ≡ 〈τp(δv)〉. (32)

It is necessary to perform weighted average over the time-statistics in a weighted way. This
is due to the fact that by looking at the exit-time statistics we are not sampling the time-series
uniformly, i.e. the higher the value of τ(δv) is, the longer it remains detectable in the time
series.

It is possible to show [35] that the sequential time average of any observable, A, based
on exit-time statistics, 〈A〉e, is connected to the uniformly-in-time multifractal average by the
relation

〈A〉 = 〈Aτ 〉e
〈τ 〉e . (33)

For A = τp(δv) the above relations becomes

〈τp(δv)〉 = 〈τp+1〉e
〈τ 〉e . (34)

According to the multifractal description we assume that for velocity thresholds corresponding
to inertial range values of the velocity differences the following dimensional relation is valid:

δτ v ∼ τh → τ(δv) ∼ δv1/h,

and the probability to observe a value τ for the exit time is given by inverting the multifractal
probability, i.e. P(τ ∼ δv1/h) ∼ δv[3−D(h)]/h. With this ansatz in the inertial range one has

�p(δv) ∼
∫ hmax

hmin

dh δv[p+3−D(h)]/h ∼ δvχp , (35)

where with the Laplace method one obtains

χp = min
h

{[p + 3 − D(h)]/h}. (36)

Now let us consider the IDR properties.
For each p, the saddle point evaluation selects a particular h = hs(p) where the minimum is

reached. Let us also remark that from (35) we have an estimate for the minimum value assumed
by the velocity in the inertial range given a certain singularity h: vm(h) = δτd (h)v ∼ νh/(1+h).
Therefore, the smallest velocity value at which the scaling (35) still holds depends on both ν and
h. Namely, δvm(p) ∼ νhs(p)/1+hs(p). The most important consequence is that for δv < δvm(p)

the integral (35) is not any more dominated by the saddle point value but by the maximum
h value still dynamically alive at that velocity difference, 1/h(δv) = −1 − log(ν)/ log(δv).
This leads for δv < δvm(p) to a pseudo-algebraic law:

�p(δv) ∼ δv[p + 3 − D(h(δv))]/h(δv). (37)
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Figure 3. Inverse structure functions �1(δv). The straight lines show the dissipative range behavior
(dashed) �1(δv) ∼ δv, and the inertial range non-intermittent behavior (dotted) �1(δv) ∼ (δv)3.
The inset shows the direct structure function S1(τ ) with the superimposed intermittent slope
ζ1 = 0.39.

The presence of this p-dependent velocity range, intermediate between the inertial range,
�p(δv) ∼ δvχp , and the dissipative scaling, �p(δv) ∼ δvp, is the IDR signature.

In figure 3 we show �1(δv) evaluated on a string of high-Reynolds number experimental
data as a function of the available range of velocity thresholds δv. This data set has been
measured in a wind tunnel at Reλ ∼ 2000. One can see that the scaling is very poor. On
the other hand (the inset of figure 3), the scaling behavior of the direct structure functions
〈|δv(τ )|〉 ∼ τ ζ1 is quite clear in a wide range of scales. This is a clear evidence of IDR’s
contamination into the whole range of available velocity values for the Inverse-SF cases.

Now let us go back to the statistical properties of the IDR. In order to study this question
we have smoothed the stochastic synthetic field, v(t) (see the appendix) by performing a
running-time average over a time-window, δT . Then we compare Inverse-SF obtained for
different Reynolds numbers, i.e. for different dissipative cut-off: Re ∼ δT −4/3.

Expression (37) predicts the possibility to obtain a data collapse of all curves with different
Reynolds numbers by rescaling the Inverse-SF as follows [27, 36]:

−ln(�p(δv))/ln(δT /δT0) versus −ln(δv/U)/ln(δT /δT0), (38)

where U and δT0 are adjustable dimensional parameters.
Figure 4 shows the rescaling (38) of the Inverse-SF, �1(δv), both for the synthetic field

at different Reynolds numbers and for the experimental signals. As it is possible to see, the
data collapse is very good. This is a clear evidence that the poor scaling range observed in
figure 4 for the experimental signal can be explained as the signature of the IDR.

4. The relation between Eulerian and Lagrangian statistics

A problem of great interest concerns the study of the spatial and temporal structure of the
so-called passive fields, indicating by this term quantities transported by the flow without
affecting the velocity field. The paradigmatic equation for the evolution of a passive scalar
field θ(x, t) advected by a velocity field v(x, t) is [37]

∂tθ + ∇ · (vθ) = χ∇2θ (39)

where χ is the molecular diffusion coefficient.
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Problem (39) can be studied through two equivalent approaches, both due to Euler [38].
The first, referred to as ‘Eulerian’, deals at any time with the field θ in the space domain
covered by the fluid; the second considers the time evolution of trajectories of each fluid
particle and is called ‘Lagrangian’.

The motion of a fluid particle is determined by the differential equation

dx
dt

= v(x, t) (40)

which also describes the motion of test particles, for example a powder embedded in the
fluid, provided that the particles are neutral and small enough not to perturb the velocity field,
although large enough not to perform a Brownian motion. Particles of this type are commonly
used for flow visualization in fluid mechanics experiments [39]. We remark that the complete
equation for the motion of a material particle in a fluid when density and volume effects are
taken into account can be rather complicated [40, 41].

The Lagrangian equation of motion (40) formally represents a dynamical system in the
phase-space of physical coordinates. By very general considerations, it is now well established
that even in regular velocity field the motion of fluid particles can be very irregular [42, 43].
In this case initially nearby trajectories diverge exponentially and one speaks of Lagrangian
chaos or chaotic advection. In general, chaotic behaviors can arise in two-dimensional flow
only for time-dependent velocity fields, while it can be present even for stationary velocity
fields in three dimensions.

If χ = 0, it is easy to realize that (39) is equivalent to (40). Indeed, we can write

θ(x, t) = θ(T −tx, 0), (41)

where T is the formal evolution operator of (40): x(t) = T tx(0).
Taking into account the molecular diffusion χ , (39) is the Fokker–Planck equation of the

Langevin equation [44]

dx
dt

= v(x, t) + η(t), (42)
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where η is a Gaussian process with zero mean and variance

〈ηi(t)ηj (t
′)〉 = 2χδij δ(t − t ′). (43)

The dynamical system (40) becomes conservative in the phase-space in the case of an
incompressible velocity field for which

∇ · v = 0. (44)

In two dimensions, x = (x1, x2), the constraint (44) is automatically satisfied by introducing
the stream function ψ(x, t)

v1 = ∂ψ

∂x2
, v2 = − ∂ψ

∂x1
(45)

and the evolution equation becomes

dx1

dt
= ∂ψ

∂x2
,

dx2

dt
= − ∂ψ

∂x1
; (46)

i.e. formally a Hamiltonian system with the Hamiltonian given by the stream function, ψ .
The presence of Lagrangian chaos in regular flows is a remarkable example of the fact

that, in general, it is very difficult to relate the Lagrangian and Eulerian statistics. For example,
from very complicated trajectories of buoys one cannot infer the time-dependent circulation
of the sea. In the following sections, we will see that in the case of fully developed turbulence
the disordered nature of the flow makes this connection partially possible at a statistical level.

The equation of motion (40) shows that the trajectory of a single particle is not Galilean
invariant, i.e. invariant with respect to the addition of a mean velocity. The most general
Galilean invariant statistics, which is ruled by a small-scale velocity fluctuation, is given by
multi-particle, multi-time correlations for which we could expect universal features. In the
following we will consider separately the two most studied statistics: single-particle two-time
velocity differences and two-particle single-time relative dispersion.

4.1. Single-particle statistics: multifractal description of Lagrangian velocity differences

The simplest Galilean invariant Lagrangian quantity is the single-particle velocity increment
δv(t) = v(t0 + t) − v(t0), where v(t) = v(x(t), t) denotes the Lagrangian velocity of the
particle at x(t) and the independence on t0 is a consequence of the stationarity of the flow.
Dimensional analysis in fully developed turbulence predicts [15, 45]

〈δvi(t)δvj (t)〉 = C0ε̄tδij , (47)

where ε̄ is the mean energy dissipation and C0 is a numerical constant. The remarkable
coincidence that the variance of δv(t) grows linearly with time is the physical basis on which
stochastic models of particle dispersion are based. It is important to recall that the ‘diffusive’
nature of (47) is purely incidental: it is a direct consequence of Kolmogorov scaling in the
inertial range of turbulence and is not directly related to a diffusive process (i.e. there is no
decorrelation justifying the applicability of central limit theorem).

Let us briefly recall the argument leading to the scaling in (47). We can think at the
velocity v(t) advecting the Lagrangian trajectory as the superposition of the different velocity
contributions coming from turbulent eddies (which also move with the same velocity of
the Lagrangian trajectory). After a time t the components associated with the smaller (and
faster) eddies, below a certain scale �, are decorrelated and thus at the leading order one has
δv(t) � δv(�). Within Kolmogorov scaling, the velocity fluctuation at the scale � is given
by δv(�) ∼ V0(�/L)1/3, where V0 represents the typical velocity at the largest scale L. The
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Figure from [49].

correlation time of δv(�) scales as τ(�) ∼ τ0(�/L)2/3 and thus one obtains the scaling in (47)
with ε = V 2

0

/
τ0.

Equation (47) can be generalized to higher order moments with the introduction of a set
of temporal scaling exponents ξp:

〈δv(t)p〉 ∼ V
p

0 (t/τ0)
ξp . (48)

The dimensional estimation sketched above gives the prediction ξp = p/2, but one may expect
corrections to the dimensional scaling in the presence of intermittency.

A generalization of the above results which takes into account intermittency corrections
can be easily developed by using the multifractal model [46, 47]. The dimensional argument
is repeated for the local scaling exponent h, giving δv(t) ∼ V0(t/τ0)

h/(1−h). Integrating over
the h distribution one ends with

〈δv(t)p〉 ∼ V
p

0

∫
dh

(
t

τ0

)[ph−D(h)+3]/(1−h)

, (49)

where D(h) is the Eulerian fractal dimension (i.e. related to the Eulerian structure function
scaling exponents by ζ(q) = minh[qh − D(h) + 3]). In the limit t/τ0 → 0, the integral can
be estimated by a steepest descent argument giving the prediction

ξp = min
h

[
ph − D(h) + 3

1 − h

]
. (50)

The standard inequality in the multifractal model D(h) � 3h + 2 implies for (50) that even in
the presence of intermittency ξ2 = 1. Physically, this is a consequence of the fact that energy
dissipation is raised to the first power, in (47).

Experimental results [48] have shown that even at large Reynolds number the scaling
(47) is not clearly observed. Therefore, the dimensionless constant C0 is known with large
uncertainty, if compared with the Kolmogorov constant.
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Intermittency in Lagrangian velocity differences is evident by looking at the PDF of
δv(t) at different time lags, as shown in figure 5. For large time delays the PDF are close to
Gaussian while decreasing t they develop larger and larger tails, implying the breakdown of
self-similarity.

Higher order Lagrangian structure functions are shown in figure 6 for a set of direct
numerical simulations at Rλ = 284 [50, 49]. Despite the apparent scaling observed in
the log-log plot, the computation of local slopes does not give a definite value of scaling
exponents. Assuming ξ2 = 1 as predicted by (50), one can measure the relative scaling
exponent ξp/ξ2 by using the so-called extended self-similarity procedure [51]. As shown
in the inset of figure 6, we observe a well-defined scaling in the range of separations
10τD � τ � 50τD . The values of the relative exponents estimated with this method,
ξ4/ξ2 = 1.7±0.05, ξ5/ξ2 = 2.0±0.05, ξ6/ξ2 = 2.2±0.07, are in good agreement with those
predicted by the multifractal model (50).

The multifractal prediction (50) has also been checked in the simplified Lagrangian model
based on the shell model of turbulence [47].

5. Lagrangian acceleration statistics

Acceleration in fully developed turbulence is an extremely intermittent quantity which displays
fluctuations up to 80 times its root mean square [52]. These extreme events generate very large
tails in the PDF of acceleration which are therefore expected to be very far from Gaussian.

We remark that even within non-intermittent Kolmogorov scaling, acceleration PDF is
expected to be non-Gaussian. Indeed acceleration can be estimated from velocity fluctuations
at the Kolmogorov scale as

a = δv(τD)

τD

, (51)
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where τD = η/δv(η) and the Kolmogorov scale η is given by the condition ηδv(η)/ν = 1. By
assuming the scaling δv(�) � V0(�/L)h (with h = 1/3 for Kolmogorov scaling), one obtains

η

L
∼

(
V0L

ν

)− 1
1+h

(52)

and therefore

a = V 2
0

L

(
V0L

ν

) 1−2h
1+h

. (53)

Assuming a Gaussian distribution for the large-scale velocity fluctuations V0 (which is, as
already observed, consistent with many experimental and numerical observations), and taking
h = 1/3, one obtains for the PDF of a a stretched exponential tail p(a) ∼ exp(−Ca8/9).

In the presence of intermittency, the above argument has to be modified by taking into
account the fluctuations of scaling exponent. In the recent years, several models have been
proposed for describing turbulent acceleration statistics, on the basis of different physical
ingredients. In the following we want to show that the multifractal model of turbulence,
when extended to describe fluctuation at the dissipative scale, is able to predict the PDF of
acceleration observed in simulations and experiments with high accuracy [53]. Moreover, as
in the case of Lagrangian structure functions, the model does not require the introduction of
new parameters, a part of the set of Eulerian scaling exponents. In this sense, the multifractal
model become a predictive model for Lagrangian statistics.

The introduction of intermittency in the above argument is simply obtained by weighting
(53) with both the distribution of V0 (still assumed Gaussian, as intermittency is not expected
to affect large-scale statistics) and the distribution of scaling exponent h which can be rewritten
as

p(h) ∼
( η

L

)3−D(h)

∼
(

V0L

ν

)D(h)−3
1+h

. (54)

The final prediction, when written for the dimensionless acceleration ã = a/〈a2〉1/2, becomes
[53]

p(ã) ∼
∫

h

ã[h−5+D(h)]/3R
y(h)

λ exp

(
−1

2
ã2(1+h)/3R

z(h)
λ

)
dh, (55)

where y(h) = χ(h−5+D(h))/6+2(2D(h)+2h−7)/3 and z(h) = χ(1+h)/3+4(2h−1)/3.
The coefficient χ is the scaling exponent for the Reynolds dependence of the acceleration
variance, 〈a2〉 ∼ R

χ

λ , given by χ = suph (2(D(h) − 4h − 1)/(1 + h)). For the non-
intermittent Kolmogorov scaling (h = 1/3 and D(1/3) = 3), one obtains χ = 1 and (55)
recovers the stretched exponential prediction discussed above.

We note that (55) may show an unphysical divergence for a → 0 for many multifractal
models of D(h) at small h. This is not a real problem for two reasons. First, the multifractal
formalism cannot be extended to very small velocity and acceleration increments because
it is based on arguments valid only to within a constant of order 1. Thus, it is not suited
for predicting precise functional forms for the core of the PDF. Second, small values of h
correspond to very intense velocity fluctuations which have never been accurately tested in
experiments or by DNS. The precise functional form of D(h) for those values of h is therefore
unknown.

In figure 7 we compare the acceleration PDF computed from the DNS data at Rλ = 280
with the multifractal prediction (55) using for D(h) an empirical model which fits well the
Eulerian scaling exponents [20]. The large number of Lagrangian particles used in the DNS
(see [50] for details) allows us to detect events up to 80σa . The accuracy of the statistics is
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improved by averaging over the total duration of the simulation and all directions since the
flow is stationary and isotropic at small scales. Also shown in figure 7 is the non-intermittent
prediction p(ã) � ã−5/9R

−1/2
λ exp(−ã8/9/2). As is evident from the figure, the multifractal

prediction captures the shape of the acceleration PDF much better than the K41 prediction.
What is remarkable is that (55) agrees with the DNS data well into the tails of the distribution—
from the order of one standard deviation σa up to order 70σa . We emphasize that the only free
parameter in the multifractal formulation of p(ã) is the minimum value of the acceleration,
ãmin, here taken to be 1.5. In the inset of figure 7 we make a more stringent test of the
multifractal prediction (55) by plotting ã4p(ã) and which is seen to agree well with the DNS
data.

6. Relative dispersion in turbulence

Relative dispersion of two particles is historically the first issue quantitatively addressed in the
study of fully developed turbulence. This was done by Richardson, in a pioneering work on the
properties of dispersion in the atmosphere in 1926 [54], and then reconsidered by Batchelor
[55], among others, in the light of Kolmogorov 1941 theory [13].

Richardson’s description of relative dispersion is based on a diffusion equation for the
probability density function p(r, t), where r(t) = x2(t) − x1(t) is the separation of two
trajectories generated by (40). In the isotropic case the diffusion equation can be written as

∂p(r, t)
∂t

= 1

r2

∂

∂r
r2K(r)

∂p(r, t)
∂r

, (56)

where the turbulent eddy diffusivity was empirically established by Richardson to follow the
‘four-thirds law’: K(r) = k0ε

1/3r4/3 in which k0 is a dimensionless constant. The scale
dependence of diffusivity is at the origin of the accelerated nature of turbulent dispersion:
particle relative velocity grows with the separation. The Richardson empirical formula is a
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simple consequence of Kolmogorov scaling in turbulence, as first recognized by Obukhov
[56].

The solution of (56) for δ-distributed initial condition has the well-known stretched
exponential form

p(r, t) = A

(k0ε1/3t)9/2
exp

(
− 9r2/3

4k0ε1/3t

)
, (57)

where A = 2187/2240π3/2 is a normalizing factor. Of course, the assumption that the
relative dispersion can be described by a self-similar process as (56) rules out the possibility
of intermittency and therefore the scaling exponents of the moments of relative separation

〈r2n(t)〉 = C2nε
ntαn (58)

have the values αn = 3n, as follows from dimensional analysis. All the dimensionless
coefficients C2n are in this case given in terms of k0 and a single number, such as the so-called
Richardson constant C2, is sufficient to parameterize turbulent dispersion.

The hypothesis of self-similarity is reasonable in the presence of a self-affine Eulerian
velocity field, such as in the case of two-dimensional inverse cascade where the dimensional
exponents α2n = 3n/2 have indeed been found [57]. An analysis of Lagrangian trajectories
generated by a kinematic model with synthetic velocity field [58] has shown that Lagrangian
self-similarity is broken in the presence of Eulerian intermittency. In this case, it is possible to
extend the dimensional prediction for the scaling exponents αn by means of the multifractal
model of turbulence.

From the definition of relative separation

d

dt
〈rp(t)〉 = 〈rp−1δv(r)〉, (59)

where δv(r) is the velocity increments between the two trajectories. Using the multifractal
representation (7) we can write

d

dt
〈rp(t)〉 ∼

∫
dh rp−1+h+3−D(h). (60)

The time needed for the pair separation to reach the scale r is dominated by the largest time in
the process, associated with the scale r and therefore given by t ∼ r1−h. This leads to

d

dt
〈rp(t)〉 ∼

∫
dh t [p+2+h−D(h)]/(1−h). (61)

The integral is evaluated by the saddle point method and gives the final result 〈rp(t)〉 ∼ tαp

with scaling exponents

αp = inf
h

[
p + 3 − D(h)

1 − h

]
. (62)

From the standard inequality of the multifractal formalism (9) one obtains that even in the
presence of intermittency α2 = 3. As in the case of single-particle dispersion (50), here also
this is a consequence of the presence on the first power of ε in (58) for n = 1.

The scaling exponents αp satisfy the inequality αp/p < 3/2 for p > 2. This amounts to
say that, as time goes on, the right tail of the particle pair separation probability distribution
function becomes narrower and narrower. In other words, due to the Eulerian intermittency
particle pairs are more likely to stay close to each other than to experience a large separation.

The multifractal prediction (62) has been checked in the synthetic model of fully developed
turbulence [58] where the equivalent Reynolds number is very large. In the case of numerical
or experimental data, finite Reynolds effects make very difficult to measure the corrections
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to dimensional exponents. We remark that finite Reynolds effects are more important in
Lagrangian dispersion than in Eulerian statistics: as a consequence of the accelerate nature of
relative motion a large fraction of pairs exits the inertial range after a short time.

To overcome these difficulties in Lagrangian statistics, an alternative approach based on
exit-time statistics has been proposed for Lagrangian dispersion [58, 59]. In close analogy
with the exit-time approach described in section 3.3, one computes the doubling times Tρ(Rn)

for a pair separation to grow from the threshold Rn to the next one Rn+1 = ρRn. Averages
are then performed over many particle pairs. The outstanding advantage of averaging at fixed
scale separation, as opposed to averaging at a fixed time, is that crossover effects are removed
since all sampled particle pairs belong to the same scales.

Neglecting intermittency, the doubling time analysis can be used for a precise estimation
of the Richardson constant C2. From the first-passage problem for the Richardson model, (56)
one has [60]

〈Tρ(R)〉 = ρ2/3 − 1

2k0ε1/3ρ2/3
R2/3 (63)

from which one obtains

C2 = 143

81

(ρ2/3 − 1)3

ρ2

R2

ε〈Tρ〉3
. (64)

By using this expression it is possible to estimate from DNS data at moderate Reynolds
C2 = 0.50 ± 0.05 [60, 61], which is in agreement with the experimental determination [63].

Intermittency effects are evident in higher order statistics of doubling times. In particular,
one expects for the moments of inverse doubling times 〈(1/Tρ(R))p〉 a power-law behavior〈(

1

Tρ(R)

)p〉
∼ Rβp (65)

with exponents βp connected to the exponents αn [58]. Negative moments of doubling time
are dominated by pairs which separate fast; this corresponds to positive moments of relative
separation. By using the simple dimensional estimate T (R) ∼ R/δv(R) one has the prediction

βp = ζp − p, (66)

where ζp are the scaling exponents of the Eulerian structure functions (5).
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Figure 9. The inverse exit-time moments, 〈[1/Tρ(r)]p〉1/p , for p = 1, . . . , 4 compensated with
the Kolmogorov scalings (solid lines) and the multifractal predictions (dashed lines). Results from
DNS at Rλ = 284, initial particle separation r0 = 1.2η and ratio between exit times ρ = 1.25.
Figure from [61].

The multifractal prediction (66) is found to be consistent with numerical data at moderate
Reynolds number. More important, as shown in figure 9, exit-time statistics is sufficiently
accurate for discriminating between intermittent and dimensional scaling in Lagrangian
statistics.

7. Dispersion in two-dimensional convection: multifractal analysis of
more-than-smooth signals

Thermal convection in two dimensions provides an example of Bolgiano–Obukhov scaling
of turbulent fluctuations. Without entering in the details, we recall that within Boussinesq
approximation, Bolgiano–Obukhov argument assumes a local balance between buoyancy force
and inertial term [64]. In the case of two-dimensional turbulence, in the presence of a mean
temperature gradient, Bolgiano–Obukhov scaling is expected to emerge in the inverse cascade
of energy with velocity fluctuations given by the scaling law [65]:

δv(r) ∝ ε
1/5
T (βg)2/5r3/5, (67)

where εT is the (constant) flux of temperature fluctuations, β is the thermal expansion
coefficient and g is the gravity acceleration. Prediction (67) has been checked in both
laboratory experiments [66] and in high-resolution direct numerical simulations [67] which
have also shown the absence of intermittency corrections (which is a common feature of
two-dimensional inverse cascades).

Now we consider the increments of velocity for Lagrangian tracers transported by
Bolgiano turbulence. By extending the dimensional argument of section 4.1 to the general
case of velocity scaling exponent h, one obtains [62]

δv(t) ∝ V (t/τ0)
h/(1−h). (68)

At variance with the Navier–Stokes turbulence, from (67) h = 3/5 and therefore q =
h/(1 − h) = 3/2 > 1, i.e. velocity increments in the inertial range are smoother than C1

signals, the latter denoting the class of differentiable signals. This implies that Lagrangian
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Figure 10. The exit-time scaling exponents µp from Lagrangian velocity fluctuations in a DNS of
thermal convection with Bolgiano–Obukhov scaling. Lines represent the bifractal prediction (71)
and the error bars on the exponents have been estimated by evaluating differences in µp changing
the fitting interval. Figure from [62].

structure functions (48) are dominated by non-local contributions from the large-scale L which
scale as

δv(t) ∼ τL(∂tvL)(t/τL) (69)

and therefore give the scaling exponents ξp = p. This set of scaling exponent is trivially
universal for any velocity field with h > 1/2 and therefore a standard analysis of Lagrangian
velocity fluctuations is unable to disentangle the nontrivial scaling component of the signal
[62].

The statistical analysis of more-than-smooth signals has been recently addressed on the
basis of an exit-time statistics [68] in which one considers the time increments T (δv) needed
for a tracer to observe a change of δv in its velocity. Now, among the two contributions, in the
limit of small δv(t), the differentiable part (69) will dominate except when the derivative ∂tvL

vanishes and the local part (68) becomes the leading one. For a signal with 1 � q � 2, its
first derivative is a one-dimensional self-affine signal with Hölder exponent ξ = q − 1, which
thus vanishes on a fractal set of dimension D = 1 − ξ = 2 − q.

Therefore, the probability to observe the component O(tq) is equal to the probability to
pick a point on the fractal set of dimension D, i.e.

P(T ∼ δv1/q) ∼ T 1−D ∼ (δv)1−1/q . (70)

By using this probability for computing the average p-order moments of exit-time statistics,
one obtains the following bifractal prediction [68]:

〈T p(δv)〉 ∼ δvµp , with µp = min

(
p,

p

q
+ 1 − 1

q

)
. (71)

According to prediction (71), low-order moments (p � 1) of the inverse statistics only see
the differentiable part of the signal, while high-order moments (p � 1) are dominated by the
local fluctuations O(tq).

Figure 10 shows the first moments of exit times 〈T p(δv)〉 computed from a direct
numerical simulation of two-dimensional Boussinesq equation forced by a mean (unstable)
temperature gradient which generates an inverse cascade with Bolgiano–Obukhov scaling.
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Particles are advected with (40) and velocity fluctuations are collected along Lagrangian
trajectories. The bifractal spectrum predicted by (71) is clearly reproduced. We remark that
the fact that for p > 1 exponents follow the linear behavior µp = (2p + 1)/3 indicates
the absence of intermittency in Lagrangian statistics. This feature is a consequence of the
self-similarity of the inverse cascade in a two-dimensional Bolgiano convection.

8. Conclusions

Starting from the seminal work of Kolmogorov we considered the statistical features (mainly
scaling properties), both Eulerian and Lagrangian, of the fully developed turbulence in the
framework of the multifractal model, i.e. in terms of D(h). The hard, still unsolved, problem
is, of course, to compute D(h) from first principles. Up to now the unique doable approach is
to use multiplicative models motivated by phenomenological arguments. The nontrivial result
is the fact that, once D(h) is obtained with a fit of the experimental data from the scaling
exponents ζp, then the other predictions obtained in the multifractal framework, e.g. the PDF
of the velocity gradient, the existence of an intermediate dissipative range, the scaling of
Lagrangian structure functions, are well verified.
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Appendix A. Synthetic turbulence: how to generate multi-affine stochastic processes

In this appendix we describe two methods for the generation of multi-affine stochastic
signals [69, 70], whose scaling properties are fully under control. One is based on a dyadic
decomposition of the signal in a wavelet basis with a suitable assigned series of stochastic
coefficients [69]. The second is based on a multiplication of sequential Langevin processes
with a hierarchy of different characteristic times [70].

The first procedure is particularly appealing for modeling of spatial turbulent fluctuations,
because of the natural identification between wavelets and eddies in the physical space. The
second one looks more appropriate for mimicking the turbulent time evolution in a fixed point
of the space.

Using the two methods it is possible to build a rather general (d + 1)-dimensional process,
v(x, t), with given scaling properties in time and space.

A.1. An algorithm based and dyadic decomposition

A non-sequential algorithm for a one-dimensional multi-affine signal in [0, 1], v(x), can be
introduced as [69]

v(x) =
N∑

n=1

2(n−1)∑
k=1

an,kϕ

(
x − xn,k

�n

)
, (A.1)

where we have a set of reference scales �n = 2−n and ϕ(x) is a wavelet-like function [71],
i.e. of zero mean and rapidly decaying in both real space and Fourier space. The signal v(x)
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is built in terms of a superposition of fluctuations, ϕ((x − xn,k)/�n) of characteristic width
�n and centered in different points of [0, 1], xn,k = (2k + 1)/2n+1. It has been proved [70]
that provided the coefficients an,k are chosen by a random multiplicative process, i.e. the
daughter is given in terms of the mother by a random process, an+1,k′ = Xan,k with X a random
number identical, independent distributed for any {n, k}, then the result of the superposition
is a multi-affine function with given scaling exponents, namely,

〈|v(x + �) − v(x)|p〉 ∼ �ζp ,

with ζp = −p/2 − log2〈〈Xp〉〉 and �N � � � 1. In this appendix, 〈〈·〉〉 indicates the average
over the probability distribution of the multiplicative process.

Besides the rigorous proof, the rationale for the previous result is simply that due to the
hierarchical organization of the fluctuations, one may easily see that the term dominating the
expression of a velocity fluctuation at scale R, in (A.1) is given by the couple of indices {n, k}
such that n ∼ log2(R) and x ∼ xn,k , i.e. v(x + �) − v(x) ∼ an,k . The generalization (A.1) to
d dimension is given by

v(x) =
N∑

n=1

2d(n−1)∑
k=1

an,kϕ

(
x − xn,k

�n

)
,

where now the coefficients {an,k} are given in terms of a d-dimensional dyadic multiplicative
process.

A.2. A sequential algorithm

Sequential algorithms look more suitable for mimicking temporal fluctuations. With the
application to time-fluctuations in mind, we will now denote the stochastic one-dimensional
functions with u(t). The signal u(t) is obtained by a superposition of functions with different
characteristic times, representing eddies of various sizes [70]:

u(t) =
N∑

n=1

un(t). (A.2)

The functions un(t) are defined by the multiplicative process

un(t) = gn(t)x1(t)x2(t) · · · xn(t), (A.3)

where gn(t) are independent stationary random processes, whose correlation times are
supposed to be τn = (�n)

α , where α = 1 − h (i.e. τn are the eddy-turn-over time at the
scale �n) in the quasi-Lagrangian frame of reference [72] and α = 1 if one considers u(t) as
the time signal in a given point, and 〈g2

n〉 = (�n)
2h, where h is the Hölder exponent. For a

signal mimicking a turbulent flow, ignoring intermittency, we would have h = 1/3. Scaling
will appear for all time delays larger than the UV cutoff, τN , and smaller than the IR cutoff,
τ1. The xj (t) are independent, positive-defined, identical distributed random processes whose
time correlation decays with the characteristic time τj . The probability distribution of xj

determines the intermittency of the process.
The origin of (A.3) is fairly clear in the context of fully developed turbulence. Indeed we

can identify un with the velocity difference at the scale �n and xj with (εj /εj−1)
1/3, where εj

is the energy dissipation at the scale �j [70].
The following arguments show that the process defined according to (A.2) and (A.3) is

multi-affine. Because of the fast decrease of the correlation times τj = (�j )
α , the characteristic

time of un(t) is of the order of the shortest one, i.e., τn = (�n)
α . Therefore, the leading

contribution to the structure function S̃q(τ ) = 〈|u(t + τ) − u(t)|q〉 with τ ∼ τn stems from the
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nth term in (A.2). This can be understood noting that in u(t+τ)−u(t) = ∑N
k=1[uk(t+τ)−uk(t)]

the terms with k � n are negligible because uk(t + τ) � uk(t) and the terms with k � n are
subleading. Thus, one has

S̃q(τn) ∼ 〈|un|q〉 ∼ 〈〈|gn|q〉〉〈〈xq〉〉n ∼ τ
hq

α
− log2〈〈xq 〉〉

α
n , (A.4)

and therefore for the scaling exponents

ζq = hq

α
− log2〈〈xq〉〉

α
. (A.5)

The limit of an affine function can be obtained when all the xj are equal to 1. A proper proof
of these results can be found in [70].

Let us note at this stage that the previous ‘temporal’ signal for α = 1−h is a good candidate
for velocity measurements in a Lagrangian, co-moving frame of reference [72]. Indeed, in
such a reference frame the temporal decorrelation properties at the scale �n are given by the
eddy-turn-over times τn = (�n)

1−h. On the other hand, in the laboratory reference frame
the sweeping dominates the time evolution in a fixed point of the space and we must use as
characteristic times of the processes xn(t) the sweeping times τ (s)

n = �n, i.e., α = 1.
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[42] Hénon M 1966 C. R. Acad. Sci. Paris A 262 312
[43] Aref H 1984 J. Fluid Mech. 143 1
[44] Chandrasekhar S 1943 Rev. Mod. Phys. 15 1
[45] Tennekes H and Lumley J L 1972 A First Course in Turbulence (Cambridge, MA: MIT Press)
[46] Borgas M S 1993 Phil. Trans. R. Soc. Lond. A 342 379
[47] Boffetta G, De Lillo F and Musacchio S 2002 Phys. Rev. E 66 066307
[48] Mordant N, Metz P, Michel O and Pinton J F 2001 Phys. Rev. Lett. 87 214501
[49] Biferale L, Boffetta G, Celani A, Lanotte A and Toschi F 2006 J. Turbulence 7 N6
[50] Biferale L, Boffetta G, Celani A, Lanotte A and Toschi F 2005 Phys. Fluids 17 021701
[51] Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F and Succi S 1993 Phys. Rev. E 48 R29
[52] La Porta A, Voth G A, Crawford A M, Alexander J and Bodenschatz E 2001 Nature 409 1017
[53] Biferale L, Boffetta G, Celani A, Devenish B J, Lanotte A and Toschi F 2004 Phys. Rev. Lett. 93 064502
[54] Richardson L F 1926 Proc. R. Soc. Lond. A 110 709
[55] Batchelor G K 1952 Proc. Camb. Phil. Soc. 48 345
[56] Obukhov A 1941 Izv. Akad. SSSR Ser. Geogr. Geofiz. 5 453
[57] Boffetta G and Sokolov I M 2002 Phys. Fluids 14 3224
[58] Boffetta G, Celani A, Crisanti A and Vulpiani A 1999 Phys. Rev. E 60 6734
[59] Artale V, Boffetta G, Celani A, Cencini M and Vulpiani A 1997 Phys. Fluids A 9 3162
[60] Boffetta G and Sokolov I M 2002 Phys. Rev. Lett. 88 094501
[61] Biferale L, Boffetta G, Celani A, Devenish B J, Lanotte A and Toschi F 2005 Phys. Fluids 17 115101
[62] Bistagnino A, Boffetta G and Mazzino A 2007 Phys. Fluids 19 011703
[63] Ott S and Mann J 2000 J. Fluid Mech. 422 207
[64] Siggia E D 1994 Annu. Rev. Fluid Mech. 26 137
[65] Chertkov M 2003 Phys. Rev. Lett. 91 115001
[66] Zhang J, Wu X L and Xia K Q 2005 Phys. Rev. Lett. 94 174503
[67] Celani A, Mazzino A and Vergassola M 2001 Phys. Fluids 13 2133
[68] Biferale L, Cencini M, Lanotte A, Vergni D and Vulpiani A 2001 Phys. Rev. Lett. 87 124501
[69] Benzi R, Biferale L, Crisanti A, Paladin G, Vergassola M and Vulpiani A 1993 Physica D 65 352
[70] Biferale L, Boffetta G, Celani A, Crisanti A and Vulpiani A 1998 Phys. Rev. E 57 R6261
[71] Farge M 1992 Annu. Rev. Fluid Mech. 24 395
[72] L’vov V S, Podivilov E and Procaccia I 1997 Phys. Rev. E 55 7030

25

http://dx.doi.org/10.1016/0167-2789(90)90035-N
http://dx.doi.org/10.1017/S0022112091001957
http://dx.doi.org/10.1103/PhysRevLett.67.2299
http://dx.doi.org/10.1103/PhysRevE.60.R6295
http://dx.doi.org/10.1103/PhysRevLett.83.76
http://dx.doi.org/10.1016/S0370-1573(01)00025-4
http://dx.doi.org/10.1103/PhysRevLett.67.208
http://dx.doi.org/10.1038/35015000
http://dx.doi.org/10.1063/1.864230
http://dx.doi.org/10.1063/1.2338598
http://dx.doi.org/10.1017/S0022112084001233
http://dx.doi.org/10.1103/RevModPhys.15.1
http://dx.doi.org/10.1098/rsta.1993.0026
http://dx.doi.org/10.1103/PhysRevE.66.066307
http://dx.doi.org/10.1103/PhysRevLett.87.214501
http://dx.doi.org/10.1080/14685240500460832
http://dx.doi.org/10.1063/1.1846771
http://dx.doi.org/10.1103/PhysRevE.48.R29
http://dx.doi.org/10.1038/35059027
http://dx.doi.org/10.1103/PhysRevLett.93.064502
http://dx.doi.org/10.1098/rspa.1926.0043
http://dx.doi.org/10.1063/1.1498121
http://dx.doi.org/10.1103/PhysRevE.60.6734
http://dx.doi.org/10.1063/1.869433
http://dx.doi.org/10.1103/PhysRevLett.88.094501
http://dx.doi.org/10.1063/1.2130742
http://dx.doi.org/10.1063/1.2432154
http://dx.doi.org/10.1017/S0022112000001658
http://dx.doi.org/10.1146/annurev.fl.26.010194.001033
http://dx.doi.org/10.1103/PhysRevLett.91.115001
http://dx.doi.org/10.1103/PhysRevLett.94.174503
http://dx.doi.org/10.1063/1.1375145
http://dx.doi.org/10.1103/PhysRevLett.87.124501
http://dx.doi.org/10.1016/0167-2789(93)90060-E
http://dx.doi.org/10.1103/PhysRevE.57.R6261
http://dx.doi.org/10.1146/annurev.fl.24.010192.002143
http://dx.doi.org/10.1103/PhysRevE.55.7030

	1. Introduction
	2. From Kolmogorov to multifractals
	2.1. The multifractal model
	2.2. Relation between
	2.3. A technical remark on multifractality

	3. Implications of multifractality on Eulerian features
	3.1. The PDF of the velocity differences and velocity gradient
	3.2. Intermediate dissipative range
	3.3. Exit times for turbulent signals and the IDR

	4. The relation between Eulerian and Lagrangian statistics
	4.1. Single-particle statistics: multifractal description of Lagrangian velocity differences

	5. Lagrangian acceleration statistics
	6. Relative dispersion in turbulence
	7. Dispersion in two-dimensional convection: multifractal analysis of more-than-smooth signals
	8. Conclusions
	Acknowledgments
	Appendix A. Synthetic turbulence: how to generate multi-affine stochastic processes
	A.1. An algorithm based and dyadic decomposition
	A.2. A sequential algorithm

	References

